Effect Of Nanoparticle Size on The Photoelectrochemical Property of Anatase Nanocrystals in Photocatalysis

A. B. Rakotoarison, W. L. Asimbolarimalala, A. Rajaona Rafihavanana, A. Ramahazomanana, H. Rainibe, M. Andrianainarivelo, W. A. Rajerison, L. Raharimalala, R. Randrianja, C. Andriamiadamanana

Abstract


Using light energy to make electrochemical reaction, photocatalysis is among the most promising technology for water treatment. In heterogeneous catalysis, electrochemical reactions occur at the liquid/solid of gas/solid interface. The development of materials with a high surface area (nanomaterials) has then been considered as the best route achieving an efficient system. In this paper, we studied the effect of the crystal size on the photoelectrochemical properties of anatase. Two synthesis routes were used to get nanoparticles with different size and the comparison of their efficiency for the degradation of rhodamine B under ultraviolet (UV) light excitation showed that crystallite size is most important than surface area consideration. Comparing results obtained under UV lamp and under sunlight excitation, we also demonstrated that photocatalysis is more efficient under sunlight radiation.


Keywords


Photocatalysis, anatase, TiO2, size effects, nanocrystals, nanomaterials

Full Text:

PDF

References


A.O. Ibhadon, P. Fitzpatrick, Catalysts 3 (2013) 189.

J.-M. Herrmann, C. Guillard, P. Pichat, Catalysis Today, 17 (1993) 7-20.

A. N. Sayed, H. Wasseem, Nanotecnology 29 (2018) 342001.

J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D. W. Bahnemann, Chemical Reviews 114 (2014) 9919.

D. Reyes-Coronado, G. Rodrigez-Gattorno, M.E. Spinoza-Pesqueira, C. Cab, R. de Cos, G. Oskam, Nanotechnology 19 (2008) 145605.

G. L. Chiarello, A. Di Paolla, L. Palmissano, E. Selli, Photochemical and Photobiological Sciences 10 (2011) 355.

R. S. Dubey, Material letters 215 (2018) 312.

M. Wu, J. Long, A. Huang, Y. Luo, Langmuir 15 (1999) 8822.

W. Burasso, V. Lachom, P. Siriya, P. Laokul, Material Research Express 5 (2018) 115003.

J-N. Nian, H. Teng, Journal of Physical Chemistry B 110 (2006) 4193.

M. S. Waghmode, A. B. Gunjal, J. A. Mulla, N. N. Patil, N. N. Nawani, Nature Springer Applied Sciences 1 (2019) 310.

C. Andriamiadamanana, C. Laberty-Robert, M. T. Sougrati, S. Casale, C. Davoisne, S. Patra, F. Sauvage, Inorganic Chemistry 53 (2014) 10129.

R. C. Mehrotra, Journal of Non-Crystalline Solids 121 (1990) 1.

C. Sanchez, J. Livage, M. Henry, F. Babonneau, Journal of Non-Crystalline Solids 100 (1988) 65.

K. Kobayakawa, Y. Murakami, Y. Sato, Journal of Photochemistry and Photobiology A: Chemistry 170 (2005) 177.

A. Pottier, S. Cassaignon, C. Chaneac, F. Villain, E. Tronc, J-P. Jolivet, Journal of Material Chemistry 13 (2003) 877.

D.A.H. Hanaor, C. C. Sorrell, Journal of Material Science 46 (2011) 855.

T. Luttrell, S. Halpegamage, J. Tao, A . Kramer, E. Sutter, M. Batzill, Scientific reports 4 (2014) 4043.

X. Yu, B. Kim, Y. K. Kim, Acs Catalysis 3 (2013) 2479.

D. Jiang, W. Wang, L. Zhang, Y. Zheng, Z. Wang, ACS Catalysis 5 (2015) 4851.

W. F. Zhang, M. S. Zhang, Z. Yin, Q. Chen, Applied Physics B 70 (2000) 261.




DOI: http://dx.doi.org/10.52155/ijpsat.v29.1.3604

Refbacks

  • There are currently no refbacks.


Copyright (c) 2021 Christian Andriamiadamanana

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.